

ESL ESL

ESL

ESL Simulation Software
User Guide and Tutorial

ESL Simulation Software - User Guide and Tutorial ii

Copyright ISIM International Simulation Limited 2018 – All Rights Reserved

Document Information
Version: 1.8
Date Published: February 2018

This document relates to ESL version 8.2.3

ISIM welcomes any suggestions to improve
the ESL Simulation Software and documentation.

If you have any suggestions, or would like to point out
any errors or omissions, please contact us:

ISIM International Simulation Limited
161 Claremont Road
Salford
M6 8PA
UK

Tel: +44 (0) 161-736-5283
Fax: +44 (0) 087-1251-8549

Email: info@isimsimulation.com
Web: https://www.isimsimulation.com

 Table of Contents

ESL Simulation Software - User Guide and Tutorial iii

Table of Contents
1 Introduction.. 1-1

1.1 Background .. 1-1
1.2 The Style of the Guide ... 1-1

2 A Simple Example ... 2-1
2.1 Creating the Block Diagram ... 2-1
2.2 Setting Simulation Element Attributes .. 2-3

2.2.1 Step Input Attributes ... 2-3
2.2.2 Constant Multiplier Attributes .. 2-4
2.2.3 Transfer Function Attributes ... 2-4

2.3 Naming Simulation Element Outputs ... 2-6
2.4 Specifying Output ... 2-7
2.5 Saving the Application .. 2-8
2.6 Running the Simulation .. 2-8
2.7 Varying Parameter Values ... 2-11
2.8 Post Run Plotting ... 2-13
2.9 Further Exercises ... 2-14

3 Extending the Example - Submodels .. 3-1
3.1 Defining a Submodel .. 3-1
3.2 Building the Graphical Submodel ... 3-2
3.3 Running the Modified Model .. 3-3
3.4 Submodel Definitions and Instances .. 3-4

4 A Textual Submodel .. 4-1
4.1 Inserting a Textual Submodel .. 4-1

5 The ESL Language .. 5-1
5.1 Program Structure .. 5-1

5.1.1 Packages .. 5-1
5.1.2 Procedures .. 5-1
5.1.3 Submodels .. 5-1
5.1.4 Model .. 5-1
5.1.5 Experiment .. 5-2

5.2 Model and Submodel Structure ... 5-2
5.2.1 Model Statement ... 5-2
5.2.2 Initial Region ... 5-2
5.2.3 Dynamic Region .. 5-3
5.2.4 Step Region .. 5-3
5.2.5 Communication Region... 5-3
5.2.6 Terminal Region .. 5-4
5.2.7 Simulation Parameters.. 5-4

5.3 Program Example .. 5-4
5.3.1 Running the Program .. 5-6

5.3.1.1 Running from a command prompt .. 5-6
5.3.1.2 Running an ESL textual program from ISE .. 5-8

6 External Submodels and Toolboxes ... 6-1
6.1 The Submodel Manager ... 6-1
6.2 Toolboxes ... 6-2

6.2.1 Creating a Toolbox .. 6-2
6.2.2 Loading a Toolbox .. 6-4
6.2.3 Editing a Toolbox .. 6-4
6.2.4 Portability .. 6-4

 Table of Contents

ESL Simulation Software - User Guide and Tutorial iv

7 Advanced Features ... 7-1
7.1 Discontinuities .. 7-1

7.1.1 What are Discontinuities? ... 7-1
7.1.2 Handling Discontinuities in ESL .. 7-1
7.1.3 Representation of Discontinuities in ESL.. 7-2

7.1.3.1 If clause .. 7-2
7.1.3.2 When statement .. 7-3

7.2 Segments ... 7-4
7.2.1 Emulated Segments .. 7-5
7.2.2 Remote Segments .. 7-6
7.2.3 Embedded Segments ... 7-7

Chapter 1 Introduction

ESL Simulation Software - User Guide and Tutorial 1-1

CHAPTER 1

1 Introduction
The purpose of the guide is to introduce ESL by means of a series of tutorial exercises.

1.1 Background
The simulation package, ESL, has evolved from a series of contracts undertaken by ISIM
International Simulation Limited and the University of Salford for the European Space Agency
(ESA) over a period of some twenty years. The initial contract, which was a research study of
simulation algorithms suitable for parallel architecture hardware, produced a proposal for a
new Continuous System Simulation Language (CSSL) standard. The proposed standard
included features that allowed the decomposition of a large simulation into segments that
could, in principle, be executed on parallel hardware. (Although initially this feature was
emulated on a single processor, distributed simulation over a network of computers was fully
implemented at a later date).

A second contract saw the implementation of a minimal software suite, which supported the
proposed CSSL standard and the first version of ESL was born. There then followed a series
of contracts in which the language was extended and enhanced to meet the requirements of
ESA. These extensions included the addition of graphical interfaces for block diagram model
description, interactive simulation execution control and graphical analysis of results. Other
enhancements included embedded and remote simulation capability, C++ translation, matrix
arithmetic and both single and multiple-variable transfer function representation of dynamic
elements.

During recent stages of the product development, a completely new graphical user interface
has been added providing an Integrated Simulation Environment (ISE) from which all phases
of the simulation process can be managed.

Although initially developed for the European Space Agency, ESL is a general-purpose
continuous system simulation tool, with discrete event capability, that finds applications in the
non-space sector as well as the space sector. The following are a selection of past and recent
applications:

 Design of the Giotto (Halley's Comet probe) "Despin" antenna system.

 Investigation of thermal vibrations in the solar panels of the Hubble Space Telescope.

 Modelling of Nickel Cadmium battery systems for ERS1 (Earth Resource Satellite).

 Attitude Control Computer's Environment Simulation (ACC EnvSim) for the XMM
Software Validation Facility (SVF).

 Dynamics Simulation Library of the Model Library for Software Validation (MOLISOVA)
developed by GMV.

 Software Validation Facility for the Attitude and Orbit Control Subsystem (AOCS)
software of the scientific satellite ISO and the integrated data handling and AOCS
software for communications satellite Artemis.

 Off-shore Gas-Rig training simulator.

 Gas Compressor station simulation.

 Rapid Gravity Water Filter-Bed simulation.

1.2 The Style of the Guide
The guide is not intended to be an exhaustive reference manual for ESL. Rather it aims to
introduce the main features of the software and provide enough information to get you started
using ESL. Detailed information all topics introduced will be found in the extensive on-line
help, which you are encouraged to consult at each stage.

Chapter 2 A Simple Example

ESL Simulation Software - User Guide and Tutorial 2-1

CHAPTER 2

2 A Simple Example
You will create a simple single-input, single-output feedback control system application. This
will introduce the following features:

 layout of the Integrated Simulation Environment (ISE)

 simulation elements

 use of the graphical editor to create a top-level block diagram

 setting simulation element attributes

 use of the display elements

 running and interacting with the simulation

 post-run plotting

The example to be considered is the feedback control system shown in block diagram form in
Figure 1:

Figure 1 - Feedback Control System

We are interested in the response of the system for different types of input (step, sinusoidal)
while varying the values of the gain (K) and feedback time constant (Tc). Initially, K = 2.0 and
Tc = 0.1 seconds.

2.1 Creating the Block Diagram
Start ESL ISE - usually from the Start Menu. The appearance of the main window of ISE will
be as shown in Figure 2. The window is divided into the following areas:

 the Canvas - on which block diagrams are created

 the Palette - containing standard simulation elements

 the Message Window - in which informative text is displayed

 the Menu Bar - primary means of selecting ISE options

 the Status bar - displays name of selected palette object and information about certain
operations

ISE runs in one of two modes: Edit mode and Run mode. On start-up it is in Edit mode in
which you create simulation models.

 _

controller plant

feedback transducer

Chapter 2 A Simple Example

ESL Simulation Software - User Guide and Tutorial 2-2

Figure 2 - ISE Main Window

By selecting the Input/Output and Common Elements panels from the palette combo-box,
drag simulation elements onto the canvas in the arrangement shown in Figure 3.

Figure 3 - Positioning Simulation Elements

To drag a simulation element onto the palette - position the pointer over the required element
on the palette, hold the left mouse button down, move to the desired position and release the
button (notice the name of the simulation element displayed in the Status bar during this
operation). Elements can be repositioned on the canvas by selecting and dragging in a similar
manner. The horizontal orientation of the lower Transfer Function element has been reversed
by choosing a Left/Right Flip from the element short-cut menu (right mouse click).

The simulation elements can now be interconnected as shown in Figure 4. To do this, select a
simulation element termination, left mouse click, extend the signal line to the next termination
and complete the connection with a further left mouse click. Intervening nodes are created by
additional left mouse clicks. Note the advisory messages that appear in the Status bar during
these operations.

Canvas

Palette

Message
Window

Menu Bar

Status Bar

Chapter 2 A Simple Example

ESL Simulation Software - User Guide and Tutorial 2-3

Figure 4 - Interconnecting Simulation Elements

Signal lines started in error can be abandoned by a right mouse click. Existing signal lines
and nodes can be removed through their appropriate short-cut menu option.

2.2 Setting Simulation Element Attributes
The next stage is to set the simulation element attributes. You open the Attributes dialog for a
simulation element by a left mouse double click or selecting Attributes from the short-cut
menu (right mouse click). In the diagram you have constructed so far, all the simulation
elements except the summer have associated attributes.

2.2.1 Step Input Attributes

The Step Input Attributes dialog has the appearance of Figure 5.

Figure 5 - Step Input Attribute dialog

There are three attributes: Name; Amplitude and Time Delay.

 Name is simply an identification that you want to give to this particular simulation element.
It plays no functional part in the running of the simulation but will be displayed on the
canvas below the simulation element (if you check its annotation box).

 Amplitude is the amplitude of the step input. It has a default value of 1.0.

 Time Delay is an optional delay from the start of the simulation run to the occurrence of
the step input. It has a default value of 0.0, i.e. no delay.

The small boxes next to the attribute names and values are annotation boxes. Checking
these causes attribute details to be displayed on the canvas close to the simulation element.

An attribute can be specified as:

 A literal value – simply accept or change the default value.

 A parameter – which can be changed interactively when ISE is in Run mode.

 A package variable (see later section on packages).

 An output – that is the output of another simulation element that has had its attributable
box checked (see Naming Simulation Element Outputs).

Chapter 2 A Simple Example

ESL Simulation Software - User Guide and Tutorial 2-4

The first drop-down box following the name of the attribute allows you to choose which option
to use. The second drop-down box will show the names of any existing parameters, package
variables or outputs that can be assigned to the attribute. A new parameter can be created by
clicking the New button. In this case we will specify a Name, accept the default values for
Amplitude and Delay and click the annotation check boxes to cause the Name and Amplitude
attributes to be displayed on the canvas. The completed dialog is shown in Figure 6 and the
resultant appearance on the canvas in the completed diagram Figure 11.

Note: A Parameter is an ESL data item that has scope within the program module in which it is
declared. It must have an initial value but this can be changed at run time through ISE, the
ESL Interact service or a driver file.

Figure 6 - Completed Step Input Attributes

2.2.2 Constant Multiplier Attributes

In the case of the Constant Multiplier simulation element, we will assign a Parameter called
Gain with a value of 2.0 to the single Coefficient attribute. To do this select Parameter from
the first drop-down box, click the New button in the Constant Multiplier Attributes dialog and
enter the details as shown in Figure 7. On closing the New Parameter dialog, the Parameter
and value check boxes in the Attributes dialog should be checked to give the appearance on
the canvas shown in Figure 11.

Note: The New Parameter dialog lets you specify a “true” Parameter, i.e. a value that can be
changed interactively when ISE is in Run mode; a Constant, whose value can only be
changed in Edit mode and a Variable which can be changed programmatically.

Figure 7 - Constant Multiplier Attributes

2.2.3 Transfer Function Attributes

The Transfer Function Attributes dialog differs from that of the other simulation elements and
has the appearance of Figure 8. You can enter the numerator and denominator of the transfer
function to be represented. Figure 8 shows how you should complete the dialog for the
Transfer Function element in the forward path of the control system loop, representing the
plant to be controlled. (See the on-line help for details of transfer function syntax.)

Chapter 2 A Simple Example

ESL Simulation Software - User Guide and Tutorial 2-5

Figure 8 - Forward Path Transfer Function Attributes dialog

Before setting the return path Transfer Function element attributes, we will use a different
method to define a Parameter that will be used in the transfer function. Select Parameters
from the Edit menu. This will open the Edit Parameters dialog, listing the parameters declared
so far (only one – Gain, tagged with an * indicating that it is in use). Click the New button and
define a Real parameter Tc with a value 0.1 (

Figure 9).

Figure 9 - Edit Parameters dialog

Note: When defining a parameter from a simulation element Attributes dialog, the appropriate type
(Real, Integer, Logical) is pre-set and determined by the simulation element attribute.
Whereas from the Edit menu, parameters of any type can be defined but Real is selected as
the default.

Now you can set the return path Transfer Function element Attributes, as shown in Figure 10
and include the newly created parameter in the denominator.

Chapter 2 A Simple Example

ESL Simulation Software - User Guide and Tutorial 2-6

Figure 10 - Return Path Transfer Function Attributes dialog

If all the appropriate annotate check boxes have been clicked, the diagram should now have
the appearance of Figure 11.

Figure 11 - Completed diagram

2.3 Naming Simulation Element Outputs
When ISE creates an ESL program from an ISE diagram, it generates ESL variables of the
form O__nnnnn to represent the outputs of the simulation elements. In order to identify
simulation element outputs at run time, you can give them more meaningful names. You do
this with a left mouse click on the simulation element output termination and select Output
Attributes. This opens the output variable dialog in which the name is entered (Figure 12).
Clicking the annotation checkbox will display the names on the canvas. Figure 13 shows the
diagram with appropriate names given to the simulation element outputs in the forward path.

Figure 12 - Output Variable dialog

Note: Checking the Attributable box allows an output to be used as an attribute in another
simulation element.

Chapter 2 A Simple Example

ESL Simulation Software - User Guide and Tutorial 2-7

Figure 13 - Simulation Element output names added

2.4 Specifying Output
There are two ways of specifying output from an ESL program:

 by placing Display Icons on the canvas and connecting them to the outputs to be
displayed

 by the use of the Display Manager

The main difference is that Display Icons are placed and connected during the editing phase
and therefore become part of the block diagram, whereas the Display Manager lets you
specify and change output specifications at run-time. Note that the Display Manager is the
only way of specifying output when running an external ESL program (i.e. an ESL program
created textually, running from ISE – see Chapter 5). We will use Display Icons.

Select the Extra panel on the palette and drag a Plot element and a Table element onto the
canvas. Choose Connect from the Plot element short-cut menu and connect to the outputs of
the Step Input and the Plant Transfer Function simulation elements. To do this, extend the
instrumentation line that appears when Connect is selected to the required output termination
node and left mouse click. Then extend a second line to the other node and left mouse click.
The connection operation is terminated by a right mouse click. Similarly, connect the Table
element to the same nodes. The diagram should now have the appearance of Figure 14.

Figure 14 - Display Icons connected

Chapter 2 A Simple Example

ESL Simulation Software - User Guide and Tutorial 2-8

Selecting Properties from a Display Icon short-cut menu allows Graphical or tabular output to
be configured. (If you do not do this, default settings will be used.) Figure 15 shows the Plot
Properties dialog with the Title and Subtitle properties completed and Display Grids selected
for both the x- and y-axes. A corresponding dialog may be opened for the Table display
element. You should set the Plot and Table properties.

Figure 15 - Plot Display Properties

Note: The Update property allows the frequency of output to be selected: integration Step Points;
Communication Points or Communication Points and Discontinuities. Generally Step points
are best for graphical output and Communication points for tabulated output.

2.5 Saving the Application
At this point (or indeed at any point) you should save the application by selecting Save As
from the File menu and specifying a suitable name e.g. example (the extension .ise will be
automatically appended to the file name).

2.6 Running the Simulation
You have now created a block diagram representing the system to be simulated, entered all
the relevant data and are in a position to run the simulation. This is initiated from the Simulate
menu. First select the Setup option, which opens the dialog shown in Figure 16

Chapter 2 A Simple Example

ESL Simulation Software - User Guide and Tutorial 2-9

Figure 16 - Simulation Setup dialog

This dialog gives you the option to choose between the Interpret and Translate execution
modes. Further, if you choose Translate, you can select Fortran or C++ as the target
language.

Note: When you run an ISE application, an ESL program is first created from the block diagram and
compiled into an intermediate code known as h-code. The h-code may be interpreted directly
or further translated into Fortran or C++ from which an executable program is created.

Unless you have an appropriate Fortran or C++ compiler installed, leave the selection as the
default interpret mode and click Run. (Assuming Simulation Setup is correctly configured, you
can select Run directly from the Simulate menu.) ISE is now in the Run mode. This will
display the text:

Starting Simulation Process...

Waiting for Process Connection...

ESL Simulation Running

**** ESL Interpreter Run-time v8.2.1.xx

Copyright (C) ISIM International Simulation Limited 1992-2015

in the Message Window and open the Control Panel (Figure 17).

Note: When started from ISE, an ESL program runs as a separate process and communicates with
ISE through a special Simulation Execution Control protocol.

The simulation is now running and awaiting commands from the Control Panel. Notice the
various Run options: to End of Run; to Next Communication Point; to Next (integration) Step
Point; to Next Module (if the application has a model-submodel structure) and to a specified
Time. There are also buttons for: Rerun; Restart and Finish. The Advanced button extends
the control panel providing additional options discussed later.

Chapter 2 A Simple Example

ESL Simulation Software - User Guide and Tutorial 2-10

Figure 17 - Control Panel

First click the Simulation Parameters button. This opens a dialog giving you access to certain
reserved variables used to control the running of the simulation - the Simulation Parameters
(Figure 18).

Figure 18 - Simulation Parameters dialog

The Simulation Parameters are:

 Tstart start time for a simulation run

 Tfin end or final time for a simulation run

 Cint communication interval for output at regular time intervals

 Diserr discontinuity detection error tolerance

 Interr integration algorithm error tolerance

 Algo choice of numerical integration algorithm

 Nstep minimum number of integration steps per Cint

The values shown are default values. The default RK5 integration algorithm is a variable step
routine, which will automatically adjust the integration step-length and take additional
integration steps during each communication interval when necessary to satisfy the error

Chapter 2 A Simple Example

ESL Simulation Software - User Guide and Tutorial 2-11

tolerance requirements. However, for this exercise, you should change Nstep to 10 in order to
generate smoother graphical output by generating more points. Click OK to close the
Simulation Parameters dialog.

Before starting the simulation, left mouse double click the Plot and Table Display elements on
the block diagram to open the respective output windows. These windows may be resized
and moved to convenient locations on the Desktop. Now run the model by clicking the Start
button on the Control Panel. Figure 19 shows the output you should see.

Referring back to the original problem (Figure 1), we see that we have a proportional control
system with a gain of 2.0. Since the steady-state characteristics of both the plant and

feedback elements are unity, the system output should settle to a final value of
3

2 for unity

step input, as verified by the simulation.

Figure 19 - Graphical and Tabular output for Simple Example

2.7 Varying Parameter Values
Having made one run of the simulation, you will typically want to investigate the effect of
varying one or more parameter values. In ESL, any parameter created from the simulation
element attributes dialogs or from the edit menu Parameters option may have its value
changed at run-time. From the Control Panel, click the Variables button to open the Variables
dialog (Figure 20). This gives you access to all parameters and variables in the modules
contained in the application.

Chapter 2 A Simple Example

ESL Simulation Software - User Guide and Tutorial 2-12

Figure 20 - Variables dialog

Select EXAMPLE (the name of the main model in this case) from the Modules list and GAIN
from the Variables list. Note the details of GAIN displayed and change the value from 2 to 2.5
(say) and click Apply. To re-run the model, click Rerun followed by Continue on the Control
Panel. A second graph will appear in the plot window as in Figure 21. Note the reduced
steady-state error but increased oscillation caused by the increase in gain.

You should try varying the gain further or changing the value of the feedback time constant
parameter Tc in a similar manner. Click Rerun and Continue on the Control Panel to initiate
each new run.

On completion of running the model, exit the Run mode by clicking the Close button on the
Control Panel.

Figure 21 - Second Graph for Gain = 2.5

Chapter 2 A Simple Example

ESL Simulation Software - User Guide and Tutorial 2-13

2.8 Post Run Plotting
A consequence of creating run-time plots through the use of the Plot Display element is that a
"prepare" file containing all the graphical data is written. The prepare file can accessed from
the Display Manager at a later time for Post Run plotting. Prepare files can be specified
explicitly for any model variables from the Display Manager (opened from the Windows menu)
- you get one automatically from the Plot Display element.

If you have run the simple example in the manner described in the preceding sections, a
prepare file, RuntimePlot_1.dsp will have been created. Select Display Manager from the
Window menu and click on the Post Run Plot tab. Click the Load button and select the
RuntimePlot_1.dsp file to load the saved data into ISE. The Display Manager should now
have the appearance of Figure 22. (The number of runs, displayed to the right of the Unload
button will be greater than 2 if you have made further runs.)

To plot the data, click the New button and either accept the default PostrunPlot_1 name or
specify a different name from the New Display Definition dialog (Figure 23). The Variables
box now becomes un-greyed. Populate the Contents boxes by selecting variables in turn in
the Variables box and clicking the Add button or by double clicking on a variable. Note that
the first variable is entered in the single line Contents box as the independent variable against
which the other are plotted. You can remove and re-arrange the variables in the Contents
boxes by means of the Remove, Move Up and Move Down buttons.

Figure 22 - Display Manager - Post Run Plot

Chapter 2 A Simple Example

ESL Simulation Software - User Guide and Tutorial 2-14

Figure 23 - New Display Definition

Selecting a variable in the Contents boxes and clicking the Details button (or by double-
clicking the variable) opens the Variable Details dialog (Figure 24). From here you can
change the label that will appear on the graph, add units or other annotation and specify for
which run(s) the selected variable should be plotted.

Before creating the graph you can set certain parameters by clicking the Properties button to
open the Plot Properties dialog. This is the same as the dialog opened from the Plot Display
element (Figure 15). If you specified a Title and Subtitle when configuring the Plot Display
element, they will appear in the Plot Properties dialog where they can be edited. Other
properties (axes specifications etc) will have default values.

Figure 24 - Variable Details

Once you have set the properties and clicked the OK button on the Plot Properties dialog, you
open the graph by clicking the Create button.

2.9 Further Exercises
Try replacing the Step Input simulation element with a Sinusoidal, Ramp or Square-Wave
input element.

Chapter 3 Extending the Example - Submodels

ESL Simulation Software - User Guide and Tutorial 3-1

CHAPTER 3

3 Extending the Example -
Submodels

In this chapter you will be shown how to extend the example that you created in the previous
chapter. This will introduce:

 graphically defined submodels

The simple control system example introduced in Chapter 2 used, in effect, a "proportional"
control law (represented by the Constant Multiplier element in the forward path. Suppose you
wanted to use a "proportional plus integral" control law. This could be achieved by replacing
the Constant Multiplier with a submodel.

Note: There is in fact a standard PI control element to be found on the Library (Linear) panel on the
palette. Building one from first principles is simply being used to illustrate the general
procedure for creating submodels.

3.1 Defining a Submodel
First of all delete the Constant Multiplier (right mouse click the element and choose Delete
from the short-cut menu). Then select the Extra panel of the palette and drag a submodel
element onto the canvas in the space previously occupied by the Constant Multiplier. Right
mouse click the submodel element and select Set Definition>New Internal (Figure 25).
Change the name in the New Submodel Definition dialog (Figure 26), leave the Graphical
radio button selected and click the Edit button. This will open a new ISE submodel window,
similar to the main window.

Figure 25 - Inserting a submodel

Chapter 3 Extending the Example - Submodels

ESL Simulation Software - User Guide and Tutorial 3-2

Figure 26 - New Submodel definition

3.2 Building the Graphical Submodel
The control law to be represented by the submodel is:

 dt xKixGainy

where x is the input error signal, y is the output actuation signal to the plant and Gain and Ki
are parameters.

In the submodel window, drag three Real Input Parameter elements and one Real Output
Parameter element from the Input/Output panel of the palette onto the canvas for the
submodel inputs and output. Build the rest of the submodel using simulation elements from
the Common Elements panel as shown in Figure 27.

Figure 27 - Graphical PI Controller submodel

Note that the attributes of the Input and Output Parameter elements are simply the names of
the submodel arguments. You should double click the top termination of the Summer element
to change its sign from - to +. The integrator initial condition attribute should be left as its
default value of zero.

When you have completed the submodel diagram, click Close on the File menu. The
Submodel element in the main window will now have input and output terminations, which you
can connect up to complete the diagram as in Figure 28. Note that the Gain and Ki submodel
inputs are provided by constant input elements with parameter attributes (the existing Gain
parameter can be reused but a new parameter, Ki, has to be created). The values chosen for
these parameters are such that there is initially no integral control action and the gain is the
same as before. Annotation has been added above the Controller element using the Text
element from the palette Extra panel.

Chapter 3 Extending the Example - Submodels

ESL Simulation Software - User Guide and Tutorial 3-3

You can display the submodel diagram at any time by a right mouse click on the submodel
element and choosing Edit or by double clicking on the element.

Figure 28 - Simple example with PI Controller

3.3 Running the Modified Model
Now run the model by clicking Run in the Simulate menu. Ensure that the parameter Tc has
its original value of 0.1 by opening the Variables dialog and selecting TC from the EXAMPLE
module. You should double click on the Plot Display element to open the plot window before
starting the simulation by clicking the Start button on the Control Panel. The graphical output
should be identical to that obtained for the first run of the model in its original form (Figure 19).

Now try changing the values of the PI Controller submodel parameters and re-running the
model. Change the parameter values from the Variables dialog by selecting the EXAMPLE
module. Remember to click the Control Panel Rerun button followed by the Continue button
to rerun the model. Suggested values, close to the optimum, are:

Ki = 5.0 (corresponding to an integral time constant of 0.2s)
Gain = 0.8

The above values should give the results shown in Figure 29 where the second graph
corresponds to the new parameter values.

This example shows the effect of the integral control action in bringing the output of the
control system quickly to the input demand value. Try experimenting with different parameter
values.

Chapter 3 Extending the Example - Submodels

ESL Simulation Software - User Guide and Tutorial 3-4

Figure 29 - Results using PI Controller

3.4 Submodel Definitions and Instances
It is important to understand that the PI_Controller submodel element on the main diagram
represents an "instance" of the submodel not the submodel itself. That is, further Submodel
elements can be dragged onto the diagram and have their definitions set to PI_Controller (by
selecting Set Definition > Current from the Submodel element short-cut menu and selecting
PI_Controller from the list of Internal submodels).

Chapter 4 A Textual Submodel

ESL Simulation Software - User Guide and Tutorial 4-1

CHAPTER 4

4 A Textual Submodel
ESL supports both graphical and textual methods of system description. In this section you
will replace the graphically defined controller with a textually defined submodel. This will
introduce:

 use of the text editor

 an introduction to the ESL language

4.1 Inserting a Textual Submodel
To illustrate the use of textual submodels, you will replace the graphically defined PI
Controller created in the previous section with the equivalent written directly in the ESL
language.

First delete the instance of PI_CONTROLLER by a right mouse click and choosing Delete
from the short-cut menu.

Note: Note that the submodel itself remains available and can be assigned to a submodel element
at any time. To remove the submodel altogether you should open the Submodel Manager off
the Windows menu and delete the submodel definition in there.

Drag a Submodel element off the Extra panel of the palette and select Set Definition>New
Internal. Give the definition a different name to the graphical version - PI_Controller_esl, say
and click the Textual button. Click the Edit button and this will open a text editor (usually
Microsoft Notepad) displaying the following skeletal code for an ESL submodel.

-- Embedded Text Submodel

SUBMODEL PI_Controller_esl ();

INITIAL

DYNAMIC

END PI_Controller_esl ;

Edit the code to create the controller submodel as below.

-- Embedded Text Submodel

SUBMODEL PI_Controller_esl (REAL:y := REAL:Gain,Ki,x);

 REAL:int_x;

INITIAL

 int_x := 0.0;

DYNAMIC

 int_x' := x;

 y := Gain*(Ki*int_x + x);

END PI_Controller_esl ;

The lines of code are explained below:

-- Embedded Text Submodel a comment, all lines commencing with --
are treated as such

SUBMODEL PI_Controller_esl (REAL:y

:= REAL:Gain,Ki,x);

submodel definition statement defining
inputs and outputs

 REAL:int_x; declare a variable to represent the

Chapter 4 A Textual Submodel

ESL Simulation Software - User Guide and Tutorial 4-2

integral of x

INITIAL start of initial region

 int_x := 0.0; initialise integral variable

DYNAMIC start of dynamic region

 int_x' := x; differential equation to integrate x

 y := Gain*(Ki*int_x + x); control law

END PI_Controller_esl ; submodel end statement

This simple example illustrates the basic structure of a model or submodel. Following the
definition statement, any local data are declared. In the initial region state variables are given
initial values and any start-of-run calculations are executed. The dynamic region contains the
differential equations and statements that form the mathematical model. Further detail of the
ESL language is given in Chapter 5.

Note that while editing text, you cannot make further changes to the block diagram. Save the
file and close the editor. The model in the main ISE window should now have the same
appearance as when the submodel was defined graphically (Figure 28). However, double
clicking on the PI Controller submodel instance will now re-open the text editor. The program
can be run in the same manner as before.

The advantage of being able to create textual submodels is that often some parts of a
simulation are more easily described in terms of equations rather than by a graphical block
diagram. It may be the model description has been provided in equation form and it makes
sense to enter it as-is rather than convert it to a diagram. Also, parts of a system that are
highly non-linear, particularly if they contain discontinuities, are more naturally described
textually. ESL gives you the ability to combine graphical and textual system descriptions.

Chapter 5 The ESL Language

ESL Simulation Software - User Guide and Tutorial 5-1

CHAPTER 5

5 The ESL Language
The heart of an ESL simulation is the actual ESL program. The ESL language is extensive
and is described in detail in the sections of the on-line help. In this section you will be
introduced to the main features of the language through examples.

5.1 Program Structure
A standard ESL program is termed a Study and contains several different kinds of program
module, as shown below:

Study

 <packages>

 <procedures>

 <submodels>

 <model>

 <experiment>

End_study

A study normally contains a single model and experiment and, optionally, one or more
packages, procedures and submodels. Packages, procedures and submodels can appear in
any order, provided each is defined before it is referenced.

For more advanced use, a study may contain more than one model but only one can be
executing at any time. Models and submodels may be omitted entirely, in which case the
study becomes a purely procedural program.

5.1.1 Packages

Packages provide a way of sharing data (variables, constants and parameters) between
program modules. Named packages are referenced from a program module through the Use
statement. Packages are also used to identify externally accessible data for embedded ESL
programs.

5.1.2 Procedures

Procedures are static program modules containing purely procedural code where inputs and
outputs are passed through an argument list. An alternative form, which may be included in
expressions, is a function version which returns a single data value.

5.1.3 Submodels

Submodels are dynamic program modules containing modelling code (including differential
equations). Submodels allow a large system to be modelled in a hierarchical manner. A single
generic submodel may be instantiated any number of times to represent specific components
of the system. ESL provides a standard library of common submodels. Submodels are called
from the dynamic region of the model or other submodels.

5.1.4 Model

The model is the top-level program module containing modelling code. A simple system may
require a model only; a more complex system will include several layers of submodels below
the model.

Chapter 5 The ESL Language

ESL Simulation Software - User Guide and Tutorial 5-2

5.1.5 Experiment

The experiment contains procedural code that defines how the model is to be run. It may be
very simple - just calling for a single run of the model, or more complicated, perhaps involving
several runs of the model with different parameter values.

5.2 Model and Submodel Structure
An ESL Model is divided into a number of regions identified by a keyword. The general
structure is shown below:

Model<name><argument list>;

 <declarations>

 Initial

 <initialisation code>

 Dynamic

 <modelling code>

 Step

 <integration step code, e.g. plotting>

 Communication

 <communication point code, e.g. tabulation>

 Terminal

 <end of run code>

End <name>;

Note: Only the Dynamic region is mandatory (the Initial and Terminal regions and the Step and
Communication sub-regions of the Dynamic region are optional).

The structure of a Submodel is identical to the model except that there is no Terminal region.

The purpose of each of the regions is described in the following sections.

5.2.1 Model Statement

This statement declares the name of the model and may include an optional argument list.

Example:

My_model(Real:out1, out2 := Real:in1, In2);

The “:=” symbol separates the output arguments from the input arguments (output arguments

appearing first). The input arguments (if present) are values that are passed to the model
from the experiment once only before the model is executed; the output arguments (if
present) are values passed back to the experiment at the end, when the model terminates.

5.2.2 Initial Region

This is where any calculations and assignments are carried out before a simulation run takes
place. In particular, it is where state variables are normally initialised.

Example:

Par1 := Par2 + Par3;

x := 0.0;

x’ := 1.0;

Here Par1 may be a parameter whose value depends on Par2 and Par3; x and x’ are state
variables.

Chapter 5 The ESL Language

ESL Simulation Software - User Guide and Tutorial 5-3

Note: An alternative way of initializing state variables (or any variables) is in their declaration.

5.2.3 Dynamic Region

The dynamic region is where the differential and algebraic equations that describe the
dynamics of the system go. The main difference between the dynamic region of the model
and other regions is that the dynamic region code is declarative whereas in other regions the
code is imperative. Statements in the dynamic region describe dynamic relationships between
model variables and are deemed to be executed concurrently or in parallel. Consequently the
order in which such statements are presented in the dynamic region is immaterial –
statements can be grouped logically, in the way which best describes the system being
simulated. Of course, during execution, the dynamic region statements have to be executed
in a particular order as the solution is advanced step by step. This is taken care of by the ESL
compiler which automatically sorts the statements into an executable order. Because of the
nature of the dynamic region, certain rules apply, for example, a model variable may be
assigned a value at one point only – otherwise you would be trying to assign multiple values
to the variable simultaneously. Similarly, all state variables must be correctly initialised. (The
ESL compiler ensures that these rules, and others, are obeyed).

Note: In some rare cases you may want to ensure that the dynamic region statements are executed
in precisely the order in which you have presented them, e.g. for reasons of numerical
accuracy. In such cases, the automatic sorting function can be overruled by the inclusion of a
NOSORT statement in the code following the model statement.

Examples of dynamic region statements:

X’’ := -k*x’ – x + 1;

Deriv := x1’ + x2’;

y := INTEG(0.0, Eps*x + 3.2);

z := TRANSFER(K(s+1)/(s**2 + 2*s +1))*w;

The first statement is a natural way of writing a differential equation. Here it is a second order
equation, but it could be first order or higher order – the limit is that the total length of the
variable name plus primes (‘) must not exceed 28 characters (so you could define a 27

th
 order

differential equation in x – if you really wanted!) The second statement is just an algebraic
assignment. The third statement is an integral equation using the library submodel INTEG.
The fourth statement specifies a transfer function (see the on-line help for details of this).

5.2.4 Step Region

The step region code is executed at the end of every integration step. Typically Plot or
Prepare statements would be placed here in order to maximize the output and produce
smooth graphs. The integration step-size is determined by the reserved variables CINT and
NSTEP. CINT specifies the communication interval (see next section); NSTEP specifies the
minimum number of integration step to be taken in each communication interval. The
maximum integration step-size is therefore given by CINT/NSTEP.

Note: If you are using a variable-step integration algorithm such as RK5, the actual step-length will
be determined by the algorithm to satisfy the error criteria. However, the step-size will not
exceed CINT/NSTEP. For fixed-step integration algorithms such as RK2 and RK4, the step-
size will normally be CINT/NSTEP. The exception to this is when the integration has to
negotiate discontinuities (see Chapter 7).

5.2.5 Communication Region

The communication region code is executed at regularly spaced communication intervals, as
specified by the reserved variable CINT. This is a good place for numeric or tabulated output,
as produced by the Tabulate statement.

Chapter 5 The ESL Language

ESL Simulation Software - User Guide and Tutorial 5-4

5.2.6 Terminal Region

The terminal region contains code that is executed when the simulation run terminates, i.e.
when T >= Tfin or some other terminate condition. It is intended for any calculations that have
to be carried out at the end of a run. The Terminal region is only allowed in a model.

5.2.7 Simulation Parameters

The simulation parameters, which control a simulation run, are defined in a special Reserved
package which is always visible in models, submodels and the experiment. If you need
access to any simulation parameters a procedure, simply include a Use Reserved statement.
The simulation parameters, with their default values are:

Tstart (0.0) - initial value of T at start of run
Tfin (10.0) - final value of T at end-of-run
Cint (1.0) - communication interval
Diserr (0.0001) - discontinuity detection error tolerance
Interr (0.001) - integration error tolerance
Algo (1 or RK5) - integration algorithm
Nstep (1) - number of integration steps in CINT

Algo can be specified by assigning one of the following numeric constants:

RK5 (1) - fifth-order variable-step integration
RK4 (2) - fourth-order Runge-Kutta integration
RK2 (3) - second-order Runge-kutta integration
STIFF2 (4) - second-order stiff integration
GEAR1 (5) - Gear's variable-step stiff integration
GEAR2 (6) - Gear's method with diagonal Jacobean
ADAMS (7) - Adams predictor-corrector integration
RK1 (8) - Euler first order integration

LIN1 (21) - Newton-Raphson Linearization routine
LIN2 (22) - Simplex Linearization routine.

The last two constants LIN1 and LIN2 are used with the steady-state function Trim. There are
in addition one or two special reserved parameters, described in the on-line help, providing
information about the state of a run.

5.3 Program Example
The following example includes all of the program modules introduced above. It is essentially
the same example that was used to illustrate graphical model construction. The code is
explained in the following notes.

01 Study

02 Include "Integ";

03 Package SystemParameters;

04 -- Parameters of system

05 Real:A, B;

06 End SystemParameters;

07 Procedure ErrorSquared(Real:ActualValue,DemandValue)Return Real;

08 -- Function procedure - calculates square of error

09 Real: Value;

10 Value := (ActualValue - DemandValue)**2;

11 Return Value;

12 End ErrorSquared;

13 Submodel PIController(Real: y := Real: Gain, Ti, x);

14 -- Proportional plus integral controller submodel

15 Real: Intx;

Chapter 5 The ESL Language

ESL Simulation Software - User Guide and Tutorial 5-5

16 Initial

17 Intx := 0.0;

18 Dynamic

19 Intx' := x;

20 y := Gain*(Intx/Ti + x);

21 End PIController;

22 Submodel System(Real: output := Real: Input);

23 -- Second order system submodel

24 Use SystemParameters;

25 Dynamic

26 output := Transfer(A/(s**2 + B*s + A))*Input;

27 End System;

28 Model ControlSystem(Real: Cost := Real: Gain, Ti);

29 -- Top-level model

30 Real:Demand, Response, Error, ActuationSignal, FeedbackSignal;

31 Initial

32 Demand := 1.0;

33 Dynamic

34 Error := Demand - FeedbackSignal;

35 ActuationSignal := PIController(Gain, Ti, Error);

36 Response := System(ActuationSignal);

37 FeedbackSignal := Transfer(1/(0.1*s + 1))*Response;

38 Cost := Integ(0.0, ErrorSquared(Response, Demand));

39 Step

40 Plot "Control System", t, Demand, [Response], 0,Tfin,0,2;

41 Prepare " ",t,Demand,Response,ActuationSignal,FeedbackSignal;

42 End ControlSystem;

43 -- Experiment

44 Use SystemParameters;

45 Real: Gain, Ti, Cost;

46 -- Set system parameters

47 A := 100.0;

48 B := 10.0;

49 -- Set simulation parameters

50 Tfin := 5.0;

51 Cint := 0.5;

52 Nstep := 5;

53 -- Call model from loop

54 Loop

55 Read Gain, Ti;

56 Terminate Gain = 0.0;

57 ControlSystem(Cost := Gain, Ti);

58 Print "Cost = ", Cost;

59 End_Loop;

60 Clear_Screen;

61 End_Study

 line 1 Study statement – start of ESL program

 line 2 include the ESL library submodel Integ

 lines 3-6 defines a package defining system parameters

 lines 7-12 defines a function procedure which returns a Real value

 lines 13-21 defines a submodel for a PI controller

 line 19 - example of a differential equation

 lines 22-27 defines a submodel for the system

 line 24 Use statement giving access to the system parameters

Chapter 5 The ESL Language

ESL Simulation Software - User Guide and Tutorial 5-6

 line 26 Transfer statement describes the system transfer function

 lines 28-42 defines the model

 lines 35, 36 and 38 submodel calls

 line 40 Plot statement to generate a run-time plot

 line 41 Prepare statement to save data for post-run plotting

 lines 44-60 defines the experiment

 line 61 End_study statement – end of ESL program

The procedure ErrorSquared simply calculates the square of the difference between its two
arguments and returns the value. This is an example of a function style procedure. The
function appears in the expression in line 38.

Submodel PIController implements a simple proportional plus integral controller. Note the
state variable intx defined by the differential equation in the Dynamic region (line 19) is
initialised in the Initial region (line 17). All state variables must be properly initialised.

Submodel System models the system being controlled. In this case the dynamics of the
system are specified as a transfer function in an ESL Transfer statement (line 26). The state
variables implied by the transfer function are automatically initialised to zero. (See on-line
help for how to initialise transfer function variables to non-zero values).

The Model ControlSystem is the high-level program module, which defines the
interconnections between the submodels. Line 38 is a call to the standard library submodel
Integ (specified by the include statement - line2), used to calculate the cost function. The step
region includes statements to plot on-line and save data for post-run plotting. The significance
of these statements being in the Step sub-region is that they are executed at every integration
step. If they had appeared in the Communication sub-region, output would be generated at
regular time intervals as defined by the reserved variable Cint.

The Experiment (which comprises all statements following the program module definitions)
includes some local declarations (lines 44 and 45); statements to set the system parameters
A and B (lines 47 and 48) and statements to set the simulation parameters Tfin, Cint and
Nstep (lines 50 to 52). Tfin is the final time at which the simulation run will terminate. Time will
run from Tstart (default value 0.0) to Tfin. Cint specifies that the Model and Submodel
Communication sub-regions are executed at regular time intervals of 0.5 s and Nstep
specifies that there will be a minimum of 5 integration steps in each communication interval.
(There may be more steps if an adaptive integration algorithm is used where the step length
may be reduced to satisfy the error criteria, or discontinuities occur). The main part of the
experiment is a loop in which values are read for the variables Gain and Ti (the controller
parameters) and the model is invoked. When the program experiment is run, the user is
prompted to enter values for Gain & Ti from the console window or from a special input
window (depending on how the model is invoked – from the command line or via the ESL
ISE). Note that the Terminate statement stops the loop if a Gain of zero is entered. The
Clear_screen statement closes the run-time plot.

5.3.1 Running the Program

There are two ways to run an ESL program: from a command prompt or from ISE. First of all,
type in the code for the example program into a text file named example.esl (or copy the file
provided into a suitable directory).

5.3.1.1 Running from a command prompt

In order to run ESL from a command prompt it is necessary that certain environmental
variables have been set. This is described in the readme file provided with ESL. Ensure this
has been done and open a command prompt.

The simplest way to run the program, using the interpreter option, is to type the command:

esl example

Chapter 5 The ESL Language

ESL Simulation Software - User Guide and Tutorial 5-7

This will invoke the ESL compiler and, if there are no compilation errors, it will then invoke the
ESL interpreter. You should get a response similar to that below:

C:\Temp>esl example

**** E S L Compiler v8.2.1.xx

**** Copyright (C) ISIM International Simulation Limited 1992-2015.

< INTEG 0 WARNINGS 0 ERRORS >

< SYSTEMPARAMETERS 0 WARNINGS 0 ERRORS >

< ERRORSQUARED 0 WARNINGS 0 ERRORS >

< PICONTROLLER 0 WARNINGS 0 ERRORS >

< SYSTEM 0 WARNINGS 0 ERRORS >

< CONTROLSYSTEM 0 WARNINGS 0 ERRORS >

< EXP$MN 0 WARNINGS 0 ERRORS >

**** E S L Interpreter Run-time v8.2.0.xx

**** Copyright (C) ISIM International Simulation Limited 1992-2014.

Gain, Ti:

Enter values for the gain (Gain) and the integral control parameter (Ti), say 1.0 and 1.0. A run
of the model will take place, a value should be printed for the cost function and an ESL plot
generated i.e.

Gain, Ti: 1.0 1.0

Cost = 0.26006

Gain, Ti:

The ESL plot you should see is shown in Figure 30:

Figure 30 - ESL Plot from example.esl

Further values may now be entered for Gain and Ti giving corresponding cost function values
and additional graphs on the same ESL Plot. Entering a value of zero for Gain (and any value
for Ti) will terminate the experiment loop and the program.

You will find the full range of command line options in the on-line ESL help.

Chapter 5 The ESL Language

ESL Simulation Software - User Guide and Tutorial 5-8

5.3.1.2 Running an ESL textual program from ISE

One of the useful features of the Interactive Simulation Environment (ISE) is that not only can
you create and run graphically defined simulations, you can also compile, translate, link and
run any purely textual ESL programs. In other words, anything that can be done from a
command prompt can be done from ISE, with the added advantage that all graphical and
tabulated output can be specified interactively and you have full interaction with the program.
In the first instance we will simply run the ESL program example as it stands.

Start ESL ISE and from the Windows menu select Simulation Execution and browse to your
file example.esl. The dialog should appear as in Figure 31. Note that Execution Command
allows you to select from a number of command line options. If you select either of the options
that include Translate, you can select the C++ or FORTRAN language and specify additional
link objects (external libraries etc). Advanced users can also modify the Run command. In our
case, leave the default Execution Command (Compile and Interpret (.esl)) and simply click
the Run button. This will open the Control Panel and clicking the Start button will open a User
Input dialog (Figure 32). Enter values for Gain and Ti as before and click OK. This will
produce the same ESL Plot you obtained when running the program from a command line,
however, there will be no print out of the cost function value (due to a current restriction in ISE
– see below how to get round this). If you then click the Continue button on the Control Panel
and OK the warning that “Continue may end the simulation”, you will get back to the User
Input dialog and be able to enter further values for Gain and Ti (as before, entering a Gain of
zero will terminate the program).

Note: The option to translate and run an ESL program in FORTRAN or C++ requires the
appropriate compiler to be installed on your computer. Contact ISIM for further details.

Figure 31 - Simulation Execution dialog

Figure 32 - User Input dialog for example.esl

Although the exercise described above demonstrated that any ESL program that can be run
from a Command Prompt can also be run from ISE, it does not make full use of the interaction
offered by ISE. If you were intending to run your ESL program under ISE, you would not

Chapter 5 The ESL Language

ESL Simulation Software - User Guide and Tutorial 5-9

normally hard-code user input, output and plotting requirements in the program – these can
all be specified interactively when running the program. This gives greater flexibility; for
example you can easily change the graph plotting specification between runs, and change the
values of any parameters from the Control Panel.

To illustrate this, edit the model and experiment of your program example.esl, as shown
below, and save as example1.esl. Note that the model argument list has been removed; Gain,
Ti and Cost have been re-declared as local parameters and a variable; the Plot and Prepare
statements have been commented out; the Gain, Ti and Cost declaration in the experiment
has been commented out; the loop has been replaced with a simple model call; and the
Clear_Screen statement has been commented out.

 Model ControlSystem;

 -- Top-level model

 Real:Demand, Response, Error, ActuationSignal, FeedbackSignal;

 Parameter Real: Gain/1.0/, Ti/1.0/;

 Real: Cost;

 Initial

 Demand := 1.0;

 Dynamic

 Error := Demand - FeedbackSignal;

 ActuationSignal := PIController(Gain, Ti, Error);

 Response := System(ActuationSignal);

 FeedbackSignal := Transfer(1/(0.1*s + 1))*Response;

 Cost := Integ(0.0, ErrorSquared(Response, Demand));

 Step

-- Plot "Control System", t, Demand, [Response], 0,Tfin,0,2;

-- Prepare " ",t,Demand,Response,ActuationSignal,FeedbackSignal;

 End ControlSystem;

 -- Experiment

 -- Real: Gain, Ti, Cost;

 Use SystemParameters;

 -- Set system parameters

 A := 100.0;

 B := 10.0;

 -- Set simulation parameters

 Tfin := 5.0;

 Cint := 0.5;

 Nstep := 5;

 ControlSystem;

 -- Clear_Screen;

 End_Study

Close the current program running in ISE (click on Close in the Control Panel) and start
example1.esl from the Simulation Execution dialog. You can now specify Runtime Plots and
Prepares from the Display Definition dialog found on the Windows menu (Figure 33).

Chapter 5 The ESL Language

ESL Simulation Software - User Guide and Tutorial 5-10

Figure 33 - Display Definition dialog for Runtime Plots

For example, to define a new Runtime Plot, select the Runtime Plot tab, click New and accept
the default name (or give it a name of your choice). Then select the model
(CONTROLSYSTEM) from the Modules panel and select the variables to be plotted from the
Variables panel (either double click a variable or click the variable followed by the Add
button). The Remove, Move Up and Move Down buttons can be used to rearrange the list of
plot variables. The Properties button allows you to refine the appearance of the plot. Finally
click Create to open a plot window. Prepares can be specified in a similar manner.

You can set up a table, (from the Display Definition – Table tab) to show the value of the cost
function, Cost. Under the table Properties, select Monitor from the Style options. This will
display just the current value of T and Cost (rather than a full tabulated list) and will therefore
show the final value at the end of each run (as was the case when running from a command
line). Don’t forget to click Create to open the table.

If you now click Start on the Control Panel, you should get one run of the model using the
default values of Gain and Ti of 1.0 and 1.0 (specified in their declaration statement). The
values of Gain and Ti can now be changed from the Variables dialog (click Variable on the
Control Panel) and further runs made as described under Varying Parameter Values in
Chapter 1-1. Don’t forget to click Rerun and Continue to obtain each new run. Figure 34
shows a typical appearance after three runs of the program.

Chapter 5 The ESL Language

ESL Simulation Software - User Guide and Tutorial 5-11

Figure 34 - Running example1.esl from ISE

Chapter 6 External Submodels and Toolboxes

ESL Simulation Software - User Guide and Tutorial 6-1

CHAPTER 6

6 External Submodels and
Toolboxes

Once you can write submodels directly in the ESL language, you can incorporate these into
ISE diagrams. There are two ways of doing this:

1. through the use of the Submodel Manager

2. by adding new icons onto the palette

6.1 The Submodel Manager
The Submodel Manager allows the management of all submodel definitions set in an
application. It is invoked from the Windows menu and its appearance is shown in Figure 35.

Figure 35 – Submodel Manager

There are two scrolling windows which list the Internal (embedded) and External (linked)
submodel definitions, together with an indication of whether or not they are in use (an asterisk
in the left column indicates current use). In the example above all the submodels listed are in
use. The difference between embedded and linked submodels is: embedded submodels are
those created, either graphically or textually, within the application and saved with the
application whereas linked submodels are defined in external ESL files.

You can rename internal definitions but only delete them if they are not in current use.

Chapter 6 External Submodels and Toolboxes

ESL Simulation Software - User Guide and Tutorial 6-2

New internal definitions may be set by clicking the New button, to invoke the New Submodel
Definition dialog.

External submodels, which are not in current use, may be removed. New ones may be added
by clicking the New button and entering or browsing to an ESL file.

If an application contains submodel elements, the Submodel Manager contains a list of
Internal (embedded) and External (linked) submodels. Each of these elements may be viewed
and edited by selecting the appropriate entry and clicking the Edit button. Alternatively, they
may be renamed or deleted by clicking the Rename or Delete button. If an application
contains no submodel elements, or if there is no application, the dialog box is empty and a
new submodel element may be defined. To do this: click New, assign the new submodel a
name or accept the default, select the new entry and click Edit. (The option of defining a new
submodel is, of course, also available when existing submodels exist.)

The View ESL button next to the Internal (embedded) submodels panel allows the ESL code
that is generated from a graphical internal submodel to be viewed in the text editor. The code
may be saved as an ESL file (extension esl) for reuse as an external submodel in other ISE
applications. (Note the "<<< Viewing ESL - edits will be discarded. >>>" header must be
deleted before saving.)

6.2 Toolboxes
When you open the ISE program, the palette is populated with a selection of commonly used
simulation elements. The palette can be customised for specific application fields through the
use of toolboxes.

You can create “Toolboxes” in ISE, to customise the palette. You can specify:

 The titles of the panels in the palette, and of the areas in each panel.

 The elements to be included in each area.

 Alternate icons for the standard elements.

 Different icons for the elements when they appear on the canvas.

 Properties (shape, layout of terminations, colour and size) of individual elements or
elements within a panel or area.

 Submodels from ESL files, with their palette and canvas icons.

The idea is that you can customise the palette for your own application areas by modifying the
standard palette and adding panels and areas to provide access to specialised ESL submodel
libraries. Toolbox specifications can be saved to file allowing several different personalised
palette configurations.

You create a toolbox by means of a wizard.

6.2.1 Creating a Toolbox

You access the Toolbox Wizard from the Options dialog, which may be opened from the View
menu. In the General panel of the Options dialog (Figure 36), click the Edit button and enter a
name for the toolbox in the File dialog. The Toolbox dialog opens displaying the Panels list
(Figure 37).

You can populate the toolbox with the standard configuration of panels, areas and simulation
elements by clicking the Standard button (as in Figure 37). Select a panel and click Edit (or
double-click the panel) to see the areas assigned to it. Similarly, select an area and click Edit
to show the elements. Click Area on the Elements list to return to the areas and Panel on the
Areas list to return to the panels.

Chapter 6 External Submodels and Toolboxes

ESL Simulation Software - User Guide and Tutorial 6-3

Figure 36 - ISE Options

Figure 37 - Toolbox dialog

Use the Rename, Delete, Up and Down buttons to modify the content and layout of the lists of
panels or areas and the New button to create a new panel or area. The Shape button allows
you to globally define the following properties of elements within a panel or area. On an
Elements list, the Shape button allows the properties of a single element to be defined.

 Shape of the elements – choose from a list of standard shapes.

 Layout of terminations – choose annotated or non-annotated. Circular arranges up to four
non-annotated terminations around the element, for example, three input summer.

 Fill colour.

 Border colour.

 Size of element – width, height and corner radius.

Chapter 6 External Submodels and Toolboxes

ESL Simulation Software - User Guide and Tutorial 6-4

 Circle diameter – if circle shape chosen.

 Orient – initial orientation of the element

A blank entry for Shape and Layout indicates that the defaults are selected. Clicking the
Reset button for a panel selects the defaults. Clicking the Reset button for an area or an
individual element selects the shape properties defined at the next higher level.

New elements or submodels can be added to an Elements list by clicking the Element or
Submodel buttons. Element allows you to select from the complete set of simulation
elements. Submodel allows you to enter or browse to an ESL file and select a submodel. On
this list, the Edit button allows you to specify an alternate name for an element or submodel
and choose a palette icon. You can also choose a different icon (or no icon) to be displayed
when the element or submodel is placed on the canvas.

When you have finished defining a toolbox, click the Save or SaveAs buttons on the Panels
list to save the definition to a toolbox file.

An example of a toolbox file is provided in the ise\examples directory.

6.2.2 Loading a Toolbox

In the General panel of the Options dialog, browse to (or enter) the toolbox file name and click
the OK button.

6.2.3 Editing a Toolbox
In the General panel of the Options dialog, browse to (or enter) the toolbox file name and click
the Edit button. Then proceed as for Creating a Toolbox.

6.2.4 Portability

An important point is that you want any toolboxes you create and any ISE applications you
create that uses them to be fully portable, i.e. they must transfer to another user’s computer
where the install path for ESL may be different to yours and the user may want to run your
application from a different path to the one you used.

When creating a toolbox and you get to the point of specifying a submodel, you can browse to
the file containing that submodel (note that there can be more than one submodel in the file).
If the file is located on the ESL install path, i.e. it is in a folder under C:\ESL\esl-ise (or
wherever ESL has been installed) then use of the environment variable ESLISEHOME is
inserted in the path which is saved in the toolbox file, thus making the toolbox independent of
where ESL is installed (it could be on drive D: on another computer). Also, any ISE
application you create using your toolbox will save paths for the submodels relative
ESLISEHOME, making the application truly portable.

If, on creating the toolbox, the location any submodels is not on the ESL install path then
absolute paths will be saved in the toolbox file and in any ISE applications you created, so the
toolbox and applications will not be portable.

In short, the advice is – place all your library submodels and associated icons on the ESL
install path, e.g. in a folder at the same level as the standard ESL library lib (C:\ESL\esl-
ise\esl\mylibrary). Of course you could create your own directory structure here and have
several libraries for different applications. For example:

Chapter 6 External Submodels and Toolboxes

ESL Simulation Software - User Guide and Tutorial 6-5

Local Disk (C:)
 ESL
 esl-ise
 esl
 bin
 lib
 examples
 my_libraries
 mechanical
 heating
 control
 etc

Make sure the environment variables are set (see the readme.txt file in C:\ESL\esl-ise\doc)
and (because of a current restriction in ESL) pathnames do not contain spaces.

Chapter 7 Advanced Features

ESL Simulation Software - User Guide and Tutorial 7-1

CHAPTER 7

7 Advanced Features
In this chapter we introduce some of the more advanced features of ESL. As with the
previous material in this User Guide, the aim is to give a broad overview of the topics. A more
in-depth treatment will be found in the on-line Help.

7.1 Discontinuities

7.1.1 What are Discontinuities?

A discontinuity is an event which causes the algebraic or differential equations representing
the system to suffer a jump or step change in one or more modelling variables. Such events
are very common in real systems, for example limits, dead-space, hysteresis etc. Integration
algorithms cannot integrate satisfactorily in the presence of discontinuities. In mathematical
terms the function is piece-wise continuous with a discontinuity representing an abrupt
change in a state variable, or its first or higher derivative. A discontinuity within an integration-
step invalidates the Taylor series representation of the step, and consequently any of the
integration algorithms used.

Although ESL protects integration from discontinuities, it is helpful to understand the
consequences of an unprotected discontinuity on the integration process:

Fixed-step explicit - causes erroneous results as the method is attempting to match
Taylor series which is invalidated by the discontinuity. Small steps, giving longer
execution times minimises this effect.

Variable-step explicit - the method gives inaccurate results which are reflected in the
error estimate. This causes the step mechanism to reduce the step which spans the
discontinuity to a very small value at which the effect of the discontinuity is minimal.
The final result usually has good accuracy but at the expense of excessive
computation time.

Implicit methods – are even more sensitive to discontinuities. The result is possibly an
abortion, very slow execution and/or erroneous results.

7.1.2 Handling Discontinuities in ESL

ESL incorporates an integration-discontinuity control mechanism which accurately and
efficiently detects and locates discontinuities. ESL does not allow a discontinuity to occur
within an integration-step. It arranges for it to occur after the end of one step and before the
beginning of the next i.e., between steps. This would normally lead to a gross time error,
however at the end of each step a check is made to see if a discontinuity has occurred during
the step. If this was the case, the step is repeated with a shorter step-length based on an
interpolation of the discontinuity function (the relational expression describing the
discontinuity). The interpolation process is repeated until the end of step occurs just after the
point of discontinuity, but within a specified error bound. The change to a modelling parameter
may then be made between steps, before proceeding with the simulation of the new state of
the system. As the control mechanism does not allow any change to take effect during an
integration-step, the integration routines are protected from the effects of a discontinuity
occurring in mid-step.

The method is illustrated in Figure 38. Here a discontinuity occurs when the variable A
becomes greater than or equal to the variable B. A discontinuity function is defined as

BA .

Chapter 7 Advanced Features

ESL Simulation Software - User Guide and Tutorial 7-2

Figure 38 - Discontinuity detection

The sequence is:

 Step (1) has been computed by the integration algorithm, integration accuracy criteria
have been satisfied.

 The discontinuity detection control, however, detects a discontinuity as θ has
changed sign. It uses linear interpolation to suggest a step-length, step (2) that will be
close to the point of discontinuity. Note that the linear interpolation aims for the centre
of the error band.

 Step (2) is undertaken, but again it overshoots the discontinuity, and a further
interpolation is used to refine the step-length i.e., step (3). This and any subsequent
interpolation use quadratic, rather than linear, interpolation based on three values of θ
which span the discontinuity.

 The result of step (3) is that θ now lies within the error-bound, and the discontinuity is
regarded as being accurately detected.

 The result of the relational operation, A >= B, is now set to be true; during previous
steps 1, 2 and 3, it had been maintained false.

 The recovery step, step (4), is computed using the new result of the relational
operation. This step aims for the same point in time as the original step, step (1), in
which the discontinuity was first encountered.

 Step (5) is a normal step following the discontinuity process.

7.1.3 Representation of Discontinuities in ESL

The ESL library contains submodels for dealing with commonly occurring discontinuities such
as limiters, dead-space and hysteresis. However, two language constructs are available for
modelling any non-standard discontinuous functions. These are the If clause and the When
statement.

7.1.3.1 If clause

The If-clause is part of a modelling code assignment statement, and it may only appear in the
dynamic region of a model or submodel. It acts as a two-way, or multiple-way, switch which
assigns a single value to a variable, for example:

 y:= If a > b Then x1 Else x2;

 y:= If a > b Then x1 Else_If x< 0.0 Then x2 Else x3;

Chapter 7 Advanced Features

ESL Simulation Software - User Guide and Tutorial 7-3

 y:= If a > b and c >= (2*threshold) Then x1 Else x2;

 y:= If a > b or c > b Then x1 Else x2;

The final Else is mandatory because an assignment must always be made to the variable.
Additional Else_If clauses introduce further branches, or choices.

The value given to the variable y corresponds to the first logical expression which is true.

Note: It is the logical expressions in the above examples that generate the discontinuity functions,
i.e. expressions involving logical comparisons like > < >= etc..

The following code shows the implementation of a limiter submodel using the If-clause:

SUBMODEL LIMIT(REAL:y := CONSTANT REAL:LL,UL; REAL:x);

--

-- A limiter sets lower and upper limits on the amplitude

-- of an input variable. The calling sequence is:

--

-- y:= LIMIT(LL,UL,x)

--

-- where:

-- LL is the lower limit;

-- UL is the upper limit;

-- x is the input variable.

-- y is given a value such that:

-- y = x, if LL < x < UL,

-- y = UL, if x >= UL,

-- y = LL, if x <= LL.

--

-- Note the inputs LL, UL must be UL > LL, and are assumed

-- constant throughout a run. The output is an algebraic

-- variable.

--

 REAL: range,xnorm;

INITIAL

 if LL >= UL then

 print "**** Error in LIMIT: Limits not consistent";

 STOP;

 end_if;

 range:= UL-LL;

DYNAMIC

 xnorm:= (x-LL)/range;

--

 y:= if xnorm > 1.0 then UL

 else_if xnorm < 0.0 then LL

 else x;

--

END LIMIT;

7.1.3.2 When statement

The When statement is a modelling code statement which may only appear in the dynamic
region of a model or submodel. Its operation is fundamentally different from the If-clause. The
If-clause is active on each execution of the dynamic region and causes an assignment to be
made. The When body, however, is only executed at the instant when its logical expression
become true. Consider:

Chapter 7 Advanced Features

ESL Simulation Software - User Guide and Tutorial 7-4

 When x >= ul Then

 Print "x >= ul has changed from FALSE to TRUE at time= ", T;

 trigger:= true;

 End_When;

The body of the When statement is procedural, non-modelling code, which is only executed at
the instant when the logical expression, x >= ul, changes from false to true. The Print
statement accurately reflects the situation. Note in this example that if trigger is used
elsewhere in the dynamic region, then it must have been initialised in the Initial region, or in
its declaration. The above, however, will only set trigger when x becomes greater than or
equal to ul, and trigger is never reset. The following addresses this situation:

 When x >= ul Then

 trigger:= true;

 When x < ul Then

 trigger:= false;

 End_When;

Note: Multiple When statements can be concatenated together with a single End_When.

The following code shows the implementation of a sample and hold submodel using the
When statement:

SUBMODEL SAMHLD(REAL:y := CONSTANT REAL:per; REAL:x);

--

-- Samples and holds the value of an input variable.

-- Samples are taken periodically and the output is the

-- value of the last sample taken. The calling sequence is:

--

-- y:= SAMHLD(per,x)

--

-- where:

-- per is the sampling period;

-- x is the input variable;

-- y is given a value such that:

-- y = x, initially,

-- y = x, at the last sampling period.

--

-- Note per is assumed constant throughout a simulation run.

-- The output is a memory variable.

--

 REAL: start;

INITIAL

 y:= x;

 start:= T;

DYNAMIC

 when T - start >= per then

 start:= start+per;

 y:= x;

 end_when;

--

END SAMHLD;

7.2 Segments
An important feature of ESL is its segment structures. Segments were originally included in
ESL as a means of providing a parallel processing capability. The idea is that a large
simulation can be broken down into self-contained segments that can be executed in parallel
on different processors or networked computers. Communication takes place between
segments at pre-determined communication points through a TCP IP protocol. We shall see
that segments are useful even when they are not executed in a truly parallel manner and also

Chapter 7 Advanced Features

ESL Simulation Software - User Guide and Tutorial 7-5

that segments provide the means of embedding ESL simulations in other programs. There
are three types of segment in ESL:

 Emulated segments – these allow parallel operation to be emulated on a single
computer – useful for testing parallel segments before assignment to separate
processors and for implementing multi-rate simulations.

 Remote segments – these can be assigned to different processors for truly
parallel operation.

 Embedded segments – used where an ESL model is to be integrated with
another application.

7.2.1 Emulated Segments

A large simulation will typically include some parts which have fast dynamics (or small time
constants) while other parts will have much slower dynamics (or long time constants).
Consider, for example, an all-electric ship. The inverters and motor control circuitry will have
very small time constants, perhaps sub-microsecond; the propulsion motors will have longer
time constants, maybe of the order of milliseconds; while the dynamics of the ship itself would
be characterised by time constants of seconds or larger. If the whole simulation is written as a
single model-submodel structure, the integration step-length (and hence the time taken for the
simulation to run) will be determined by the parts that have the fastest dynamics. Emulated
segments allow different parts of the simulation to use the most appropriate step-length and
integration algorithm, while still running the simulation on a single computer, and so achieving
much shorter simulation times.

Emulated segments are defined within an ESL Study and called from the communication
region of the model. The model may include some part of the simulation or may simply be the
means of linking the individual segments. The general structure is shown below:

Study

 <packages, procedures and submodels>

 Segment Seg1(Real:out := Real:in);

 Initial

 CINT := ...;

 NSTEP := ...;

 ALGO := ...;

 Dynamic

 End seg1;

 <further segments>

 Model Mod1;

 Dynamic

 Communication

 Seg1(y := x);

 End Mod1;

 Mod1;

End_study

The structure of a segment is identical to that of a model. The simulation parameters to be
used by the segment (CINT, NSTEP, ALGO) must be set in the segment initial region. CINT
will normally be the same as that used by the model, but different values of NSTEP and
ALGO may be set allowing a different integration step-length and/or integration algorithm to
be used by the segment. An ESL Study may contain multiple segments – all called from the

Chapter 7 Advanced Features

ESL Simulation Software - User Guide and Tutorial 7-6

model communication region. The segment in the example has only one input and one output
– in general a segment may have multiple inputs and outputs.

An example of a program which uses an emulated segment seg1.esl will be found in the
esl\examples directory and is described in some detail in the on-line help. It is suggested that
as an introduction the ESL segments, you examine and run this example.

7.2.2 Remote Segments

Remote segments provide true parallel or distributed simulation over a network of computers
using a client/server arrangement – the main simulation (model and experiment) being the
client and the segments the servers.

The main difference between remote segments and emulated segments is that the remote
segments must be converted into executable code (via the FORTRAN or C++ translation
route) and copied to the computers on which they are to run. The general syntax for a remote
segment is:

Remote

 <packages, procedures and submodels>

 Segment Seg1(Real:out := Real:in);

 Initial

 CINT := ...;

 NSTEP := ...;

 ALGO := ...;

 Dynamic

 End seg1;

Note that the code begins with the keyword Remote and contains one and only one segment
plus associated packages, procedures and submodels. There is no model, experiment and no
final End_study statement. The program structure has to be: ESL compiled; translated into
FORTRAN or C++; compiled and linked to create an executable. The executable must then
copied to the remote computer on which the segment is to be executed.

Note: Different instances of the same segment may be run on different computers.

The main simulation (the client), containing the model, must include external segment
declaration statements (just the segment declaration statements from the remote structures
followed by the keyword External), e.g.

Study

 <packages, procedures and submodels>

 Segment Seg1(Real:out := Real:in)External;

 <further external segment declarations>

 Model Mod1;

 Dynamic

 Communication

 Seg1(y := x);

 End Mod1;

 Mod1;

End_study

Before the distributed simulation can be run, a segment location file must be created on the
local computer (where the main simulation is located). This file must have the same name as

Chapter 7 Advanced Features

ESL Simulation Software - User Guide and Tutorial 7-7

the main simulation program but with extension “.rem” and is used to associate a segment
name with a host and executable file. The segment location file has the general form:

Segment_Name<Spaces>Host Name<Spaces>Executable_Filename

For the above example, assuming there is just the one remote segment, Seg1, the segment
location file might contain the line:

Seg1 PC001 remseg

where Seg1 is the name of the segment; PC001 the name of the remote computer and
remseg the name of the remote segment executable.

A further consideration for running remote segments is that the user must be able to run a
process on the remote machine using the “rsh” command. The system configuration to
achieve this is beyond the scope of this document but may involve setting up a password
entry and home directory on the remote machine.

The on-line help describes how the emulated segment example seg1.esl can be modified to
run as a local model/remote segment arrangement.

7.2.3 Embedded Segments

The embedded segment provides a means of generating code that can be called from
another non-ESL program – thus enabling the segment to be embedded in another program.

In an ESL embedded segment, all interface variables appear in ESL Packages. The code
below is an example of an embedded segment for a simple linear model of a dc motor. Inputs
to the model appear in the package Esl_inp; State outputs appear in the package Esl_state
and algebraic outputs in package Esl_out. The package Esl_par contains parameters which
should be accessible to the user and Esl_view contains viewables, i.e. any variables that may
be plotted or are used to drive visualizations. The dynamic model itself is defined in the
Segment structure. The choice of package name is entirely up to you, however package
name beginning ESL_ are automatically exposed by the ‘eslgen’ command (see options
below). You could declare all the interface variables in a single package – multiple packages
have been used here to help distinguish the use of the variables.

EMBEDDED

Package Esl_inp;

 Real: va, tl;

End Esl_inp;

--

Package Esl_state;

 Real: ia, Wa;

End Esl_state;

--

Package Esl_out;

 Real: v_error;

End Esl_out;

--

Package Esl_par;

 Parameter Real:Kt/0.0275/, Kb/0.04/, Ra/9.0/,

 La/4.065e-03/, Ja/1.71e-06/, Ba/1.5e-04/;

End Esl_par;

--

Package Esl_view;

 Real: v_back, t_motor, t_avail;

End Esl_view;

--

Chapter 7 Advanced Features

ESL Simulation Software - User Guide and Tutorial 7-8

Segment dc_motor;

 Use Esl_inp; Use Esl_state;

 Use Esl_out; Use Esl_par;

 Use Esl_view;

 Real: i, w, ve, vb, tm, ta;

 Dynamic

 ve:= va-vb;

 i:=Transfer(1/(La*s + Ra))*ve;

 tm:= Kt*i; ta:= tm-tl;

 w:= Transfer(1/(Ja*s+Ba))*ta;

 vb:= Kb*w;

 Communication

 ia := i; wa := w;

 v_back := vb; v_error := ve;

 t_motor := tm; t_avail := ta;

End dc_motor;

Using an ESL utility, eslgen, an embedded segment may be compiled into:

 a dynamic link library (DLL) providing a function interface which can be used in
Microsoft Visual Basic or Visual C++ projects;

 a COM object, which can be used in Visual C++ projects (in an object oriented
manner) and also other control/ActiveX hosts (such as Web Browsers);

 or a .NET assembly, which can be used in any .NET project such as C#.

The eslgen command has the following form:

eslgen -dll|-com|-comnr|-clr filename {io_packages}

The options are:

-dll - create a DLL from an ESL embedded segment

 eslgen -dll file_no_ext {io_packages}

-com - create a COM object from an ESL embedded segment and

register it

 eslgen -com file_no_ext {io_packages}

-comnr - create a COM object from an ESL embedded segment (but

do not register it)

 eslgen -comnr file_no_ext {io_packages}

-clr - create a .NET (2+) assembly from an ESL embedded

segment

 eslgen -clr file_no_ext {io_packages}

The {io_packages} are the names of ESL packages that are to be

exposed. If none are specified, any beginning "Esl_" will be

exposed.

The generated embedded segment code (whether it be DLL, COM or .NET) provides a set of
functions or methods for running the code. These are listed in Table 1, below. In addition to
these functions, mechanisms are provided for accessing the interface variables (as declared
in ESL packages). The detail of how to call the functions and access the variables depends
on which type of code has been generated (DLL, COM or .NET) and is described in detail in
the on-line help.

The idea is that, after calling ExStrt to initialise the code, any parameters (including simulation
parameters) may be set or changed. ExInit is then called to initialise the segment (the Initial
region is executed). ExSim is then called repeatedly in a loop to keep advancing the segment
by the communication interval, CINT, on each call. Inputs are passed to the segment before
each call of ExSim, and outputs retrieved after each call. For CLR operation, a special
function, ExPrestep is provided to update segment outputs that depend directly on the inputs
without advancing time. At any time the segment can be re-initialised by calling ExInit. When
the simulation is complete the function ExFin is called to properly terminate the code.

Chapter 7 Advanced Features

ESL Simulation Software - User Guide and Tutorial 7-9

Table 1 - Embedded segment functions

Name Meaning

ExStrt
Prepare embedded code for use - must
only be used once at program start.

ExInit
Initialise embedded segment for a
single simulation run.

ExSim
Advance Simulation by one time-frame
(specified by the simulation parameter
CINT).

ExPrestep
Evaluate algebraic outputs without
advancing the simulation (CLR only).

ExFin
Close down simulation - must only be
used once at program termination.

Note: Please refer to the on-line help or contact ISIM for further details on the use of embedded
segments including directly producing FORTRAN or C++ code that may be used to invoke the
simulation in an application.

Embedded segments are a powerful feature of ESL allowing simulations to be easily
incorporated various applications. Examples of the use of embedded segments include
training simulators where, the graphical user interface has been provided by other software, a
C++ program say, which calls upon an embedded ESL program to provide the underlying
dynamic simulation.

